Abstract
A self-igniting DC-electric discharge of C2H2 in Xe (matrix gas) or C2H2 and Xe in Ar or Kr (matrix gas) is used to produce and study the XeC2 molecule in these various rare gases at 12 K. Unlike in Ar and Kr, the well-known electronic spectra of C2 is completely absent in a Xe matrix. This together with annealing experiments in Ar matrices indicate that ground state Xe and C2 react uniquely and without a barrier to form the XeC2 molecule. The IR-active C-C stretch of this compound is found to be close to the C-C stretching frequency of the C2 anion, in excellent agreement with our density functional theoretical (DFT) calculations, which yield a XeCC singlet species bent by 148.6° and with substantial charge separation approaching Xe+C2 and a notably short (2.107 Å) XeC bond. The spectra of the Xe13C12C, Xe12C13C, and Xe13C13C species are also obtained and the isotopic shifts are in excellent agreement with the DFT predictions, although not sufficient to distinguish a bent from a linear structure. Numerous broad absorptions centered near 423 nm (in Xe) are observed, which are clearly due to the XeC2 molecule. Laser-induced fluorescence studies reveal a near-IR emission likely due to XeC2 but not yet understood. Infrared spectra in the Xe matrix reveal also formation of the HXeCCH molecule.Key words: matrix-isolation spectroscopy, rare gas compounds, charge transfer compounds, xenoncarbon bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.