Abstract

The v(HF)=3 levels of the linear OC-HF complex are observed in the range of 10,800-11,500 cm(-1) using intracavity Ti-sapphire laser-induced fluorescence. The vibrational predissociation linewidths of both (30000) and (3001(1)0) states exceed 5 GHz; thus, the measured spectra are not rotationally resolvable. Under the assumption that these levels are not strongly perturbed, the rotational constants of the two levels are determined to be 0.1100(1) cm(-1) for (30000), 0.1081(1), and 0.1065(1) cm(-1) for f and e sublevels of (3001(1)0), respectively, through band contour fitting. The (30000)<--(00000) band origin is at 10,894.46(1) cm(-1), showing a HF wave number redshift of 478.3 cm(-1). The 4.07 redshift ratio of v(HF)=3 to that of v(HF)=1 indicates a significantly nonlinear increase of the intermolecular interaction energy through HF valence excitation. An ab initio interaction potential surface for HF valence coordinates varying from 0.8 to 1.25 A is used to examine vibrational dynamics. The HF valence vibration v(1) is treated perturbatively, showing that the vibrational redshifts are determined essentially in first order with only a very small second-order contribution. The (3001(1)0)<--(00000) combination transition is observed with the band origin at 11,432.66(1) cm(-1), giving the HF intermolecular bending mode to be 538.2 cm(-1). The high frequency of this vibration, compared to that in similar HF complexes, shows the strong angular anisotropy of the intermolecular interaction potential of OC-HF with respect to the HF subunit. The lifetime of the (3001(1)0) level increases to 28 ps from 14 ps for (30000).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.