Abstract

Phycoerythrocyanin (PEC) is part of the light harvesting system of cyanobacteria. The PEC monomer contains one phycoviolobilin chromophore, which transfers excitation energy onto two phycocyanobilin chromophores. Many spectroscopical methods have been used in the past to study the bulk properties of PEC. These methods average over many molecules. Therefore, differences in the behavior of individual molecules remain hidden. The energy transfer within photosynthetic complexes is however sensitive to changes in the spectroscopic properties of the participating subunits. Knowledge about heterogeneities is therefore important for the description of the energy transfer in photosynthetic systems. Here, the recording of the fluorescence emission of single PEC molecules is used as a tool to obtain such information. Spectrally resolved detection as well as double resonance excitation of single PEC molecules is used to investigate their bleaching behavior. The trans isomer of the phycoviolobilin chromophore is identified as a short-lived dark state of monomeric PEC. Polarization sensitive single molecule detection is used for the direct observation of the energy transfer in individual PEC molecules. The experiments reveal that more than one-half of the PEC molecules exhibit an energy transfer behavior significantly different from the bulk. These heterogeneities persist on a time scale of several seconds. Model calculations lead to the conclusion that they are caused by minor shifts in the spectra of the chromophores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call