Abstract
The results of the theory considering mixed plasmon-excitonic modes and their spectroscopy are presented. The plasmon-excitons are formed owing to strong Coulomb coupling between quasi-two-dimensional excitons of a quantum well and dipole plasmons of nanoparticles. The effective polarizability associated with a nanoparticle is calculated in a self-consistent approximation taking into account the local field determined by in-layer dipole plasmons and their image charges due to the excitonic polarization of a near quantum well. The spectra of elastic scattering and specular reflection of light are investigated in cases of a single silver nanoparticle and a monolayer of such particles situated in close proximity to a quantum well GaAs/AlGaAs. The optical spectra show a two-peak structure with a deep and narrow dip in the resonant range of plasmon-excitons. Propagation of plasmon-excitonic polaritons is discussed for periodic superlattices whose unit cell consists of a quantum well and a layer of metal nanoparticles. The superradiance regime originating in the Bragg diffraction of plasmon-excitonic polaritons by the superlattice is investigated. It is shown that the broad spectrum of plasmonic reflection depending on the number of unit cells in a superlattice also has a narrow dip at the exciton frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.