Abstract

We report on the in-beam gamma spectroscopy of $^{102}$Sn and $^{100}$Cd produced via two-neutron removal from carbon and CH$_2$ targets at about 150 MeV/nucleon beam energy. New transitions assigned to the decay of a second 2$^+$ excited state at 2470(60) keV in $^{102}$Sn were observed. Two-neutron removal cross sections from $^{104}$Sn and $^{102}$Cd have been extracted. The enhanced cross section to the 2$^+_2$ in $^{102}$Sn populated via the $(p,p2n)$ reaction is traced back to an increase of shell-model structure overlaps, consistent with the hypothesis that the proton-induced two-deeply-bound-nucleon removal mechanism is of direct nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.