Abstract

The electronic absorption spectrum of N,N-dimethylformamide (DMF) is studied in the 45 000-80 000 cm-1 (5.6-9.9 eV) region using synchrotron radiation. The vacuum ultraviolet (VUV) spectrum comprises mostly of Rydberg series of ns, np, and nd types converging to the first two ionization potentials (IPs). Quantum defect values obtained are consistent with excitation of an electron from the highest occupied molecular orbitals localized on nitrogen (4a″) and oxygen (16a'); in addition, the 3s Rydberg transition converging to the third IP (3a″) is observed at 8.95 eV. A reinvestigation of the infrared spectrum of DMF in the 500-4000 cm-1 region with the help of density functional theory (DFT) calculations establishes the planarity of the ground state and leads to revision of several vibrational assignments. Vertical excited state energies and their valence/Rydberg character are predicted using time dependent DFT calculations; excellent correlation is achieved between theoretical results and experimentally observed spectral features. Potential energy curves of the first few excited states give additional insights into the nature of the excited states and their role in photodissociation dynamics. The absorption spectrum of DMF in the region >63 400 cm-1 (7.85 eV) as well as a complete set of spectral assignments in the VUV region (45 000-80 000 cm-1) is reported for the first time. This work represents a comprehensive study of the absorption spectra of DMF in the VUV and infrared regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.