Abstract

The decarboxylation rates of aqueous benzoic acid and 12 mono-, di-, and trihydroxy derivatives of benzoic acid were compared by using spectra from a flow reactor FTIR spectroscopy cell operating at 275 bar in the temperature range of 120−330 °C. Each compound was investigated at its natural pH and as the neutral acid (pH = 1.3−1.5). The decarboxylation reactions followed the first-order (or pseudo-first-order) rate law enabling the rate constants and corresponding Arrhenius parameters of the undissociated acids to be obtained. Based on the half-lives of the reactions at 200 °C, the thermal stability of the OH substituted benzoic acids follow the order: 2,4,6 > 2,4 > 2,3,4 > 2,6 > 2,5 > 2,3 > 3,4,5 > 2 > 3,4 > 4. Solutions of 3,5-dihydroxybenzoic and 3-hydroxybenzoic acids and unsubstituted benzoic acid had the highest thermal stability, whereas no decarboxylation was observed up to 330 °C at a residence time of about 45s. In general, the rate order is multiple ortho, para-OH substitution > ortho substitution > para substitution > meta substitution. The range of activation energies for the decarboxylation of OH substituted benzoic acids is 90−97 kJ/mol, and the rate differences are controlled mainly by activation entropy. The transition state structures were determined using density functional theory. Starting from the anti carboxylic hydrogen conformers in the gas phase, the activation energies to the transition state structures having the four-member C−C(O)-O−H ring are 213−260 kJ/mol using B3LYP/6-31G//B3LYP/6-31G and 202−246 kJ/mol using B3LYP/6-31+G(d,p)//B3LYP/6-31G(d). Incorporation of one water molecule forms a six-member cyclic structure, which dramatically reduces the activation energy by about 120−130 kJ/mol using B3LYP/6-31G//B3LYP/6-31G and by about 75 kJ/mol using B3LYP/6-31+G(d,p)//B3LYP/6-31G(d). In the water-catalyzed transition state structure, the water molecule acts as a bridge linked by two hydrogen bonds which enables concerted proton transfer and C−(CO2H) bond cleavage to occur. Although the calculated activation energy approximately follows the trend of the experimental half-lives, the experimental activation entropy appears to dominate in determining the rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.