Abstract
Summary form only given. The recombination pumping scheme for soft X-Ray lasers has better energy scaling, than the collisional-excitation pumping scheme. Implementation of an H-like 3→2 Nitrogen recombination laser, at »∼13.4nm requires initial conditions of at least 50% fully stripped Nitrogen, kTe∼140eV and electron density of ∼1020cm−3. In order to reach population inversion, the plasma cooling to below 60eV should be faster than the typical three-body recombination time. The goal of this study is achieving the required plasma conditions using a capillary discharge z-pinch apparatus. The experimental setup includes a 90mm alumina capillary coupled to a pulsed power generator of ∼60 kA peak current, with a rise time of ∼60ns. Various diagnostic techniques are applied to measure the plasma conditions, including X-Ray diode, time-resolved pinhole imaging and time-resolved spectroscopy analysed with a multi-ion collisional-radiative atomic model. For optimization of the plasma conditions, experiments were carried out in different capillary radii and different initial N pressures. The results show a fast cooling rate to below 60eV, demonstrating the feasibility of capillary discharge lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.