Abstract

The primary and secondary combination zones of an air-acetylene flame have been separated by a stream of nitrogen flowing parallel to the flame to prevent access of atmospheric oxygen to its base. The flame is very stable over a wide range of fuel-air mixture strengths, and organic solvents may be aspirated without difficulty. The low flame background enables thermal-emission and atomic-fluorescence measurements to be made with high sensitivity. Bismuth, for example, has been determined in the range 5–200 ppm by its thermal emission at 306.8 nm, with a detection limit of 2 ppm in aqueous solution, and in the range 1–10 ppm with a detection limit of 0.3 ppm in 50% ethanolic solution. Zinc and cadmium have been determined at 213.9 nm and 228.8 nm by atomic-fluorescence spectroscopy in this flame with detection limits of 2 × 10 −4 ppm and 5 × 10 −4 ppm respectively, vapour-discharge lamps being used as sources of excitation. The results obtained represent a considerable improvement over those available by the same methods in a conventional air-acetylene flame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.