Abstract

Near-infrared (NIR) diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR techniques are based on quantitative measurements of functional contrast between healthy and diseased tissue. In this study we measured the spectral dependence of tissue absorption (mu(a)) and reduced scattering (mu'(s)) in the breasts of 30 healthy women and one woman with a fibroadenoma using a seven-wavelength frequency-domain photon migration probe. Subjects included pre- and postmenopausal women between the ages of 18 and 64. Multi-spectral measurements were used along with a four-component fit to determine the concentrations of de-oxy and oxy-hemoglobin, water and lipids in breast. The scattering spectral shape was also quantified. Our measurements demonstrate that the measured concentrations of NIR analytes correlate well with known breast physiology. Although the tissue scattering at a single wavelength was found to have little value as a functional parameter, the dependence of the scattering on wavelength provided key insights into breast composition and physiology. Lipids and scattering spectra in the breast were found to increase and decrease, respectively, with increasing body mass index. Simple calculations are also provided to demonstrate potential penalties from ignoring the contributions of water and lipids in breast measurements. Finally, water is shown to be a possible indicator for detecting a fibroadenoma, whereas the hemoglobin saturation was found to be a poor indicator. Multi-spectral measurements, compared to measurements restricted to one or two wavelengths, provide additional information that may be useful in managing breast disease.

Highlights

  • Near-infraredNIRphoton migration spectroscopy provides quantitative functional information from breast tissue that cannot be obtained by conventional radiologic techniques

  • All of the 30 healthy subjects we studied had not manifested any forms of breast disease at the time of the measurement

  • The results presented in this work strongly suggest that the spectral signature of diffuse optical signals provides distinctive functional information in the breast

Read more

Summary

Introduction

Near-infraredNIRphoton migration spectroscopy provides quantitative functional information from breast tissue that cannot be obtained by conventional radiologic techniques. NIR techniques are sensitive to several important physiological components in tissue such as hemoglobin and water. In the clinical management of breast disease, such functional information suggests a variety of potential medical applications: therapeutic monitoringangiogenesis, chemotherapy, supplemental lesion characterizationbenign versus malignant, and risk assessmentorigins of breast density. A noninvasive optical imaging technique that provides unique, quantitative physiological information can greatly enhance current screening and diagnostic monitoring for the breast. Emerging techniques for the breast such as magnetic resonance imaging and positron emission tomography have shown promise in providing functional images. These techniques are costly, 1.2 History of Early Breast Optics

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call