Abstract

We report on the observation of excited states in the neutron-deficient phosphorus isotopes $^{26,27,28}$P via in-beam gamma-ray spectroscopy with both high-efficiency and high-resolution detector arrays. In $^{26}$P, a previously-unobserved level has been identified at 244(3) keV, two new measurements of the astrophysically-important 3/2$^+$ resonance in $^{27}$P have been performed, gamma decays have been assigned to the proton-unbound levels at 2216 keV and 2483 keV in $^{28}$P, and the gamma-ray lineshape method has been used to make the first determination of the lifetimes of the two lowest-lying excited states in $^{28}$P. The expected Thomas-Ehrman shifts were calculated and applied to levels in the mirror nuclei. The resulting level energies from this procedure were then compared with the energies of known states in $^{26,27,28}$P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.