Abstract

Laser flash photolysis with time-resolved infrared detection of transients (LFP-TRIR) has been used to study the IR spectroscopy and reactivity of a number of substituted ketenes, prepared by the 308-nm photolysis of α-diazocarbonyl precursors in acetonitrile solution at room temperature. The correlation of the experimental ketene asymmetric stretching frequency to the Swain−Lupton field (F) and resonance (R) effect substituent parameters was unsatisfactory, whereas the correlation to the inductive substituent parameter (σI) of Charton gave excellent results. This suggests that the asymmetric stretching frequency of substituted ketenes depends mainly on the inductive (i.e., field) effect of the substituents. The mechanism and kinetics of the reactions of these ketenes with various amines in acetonitrile were also studied. An intermediate species identified as either zwitterionic ylide or amide enol formed in the nucleophilic addition of the secondary amine to the Cα of the ketene is observed by TRIR. The decay of this species is assisted by the amine and is concomitant with the formation of an amide, the final product of the reaction. Our kinetic data on ketene amine reactions show a general trend, indicating a much higher reactivity (ca. 3 orders of magnitude difference in the corresponding rate constants) of secondary amines compared with that of tertiary amines. Secondary diethylamine shows reactivity similar to those observed for primary amines, while secondary piperidine seems to be, in general, somewhat more reactive. The observed trend is rationalized in terms of the steric effects exerted by both amine and ketene substituents. Our data on para-substituted phenyl ketenes provide support for the negative charge development on the ketene moiety in the transition state, with electron-withdrawing substituents accelerating and electron-releasing substituents slowing down the addition reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.