Abstract
The aim of our work was to prepare stable nanohybrids of controlled size and shape consisting of a noble metal core decorated with polydiacetylenes (PDAs). Due to the combination of the outstanding linear and nonlinear optical properties of the polydiacetylenic chains with the electromagnetic field-enhancing capability of metal nanostructures, these novel composites can find potential application in different fields. In particular, the different colours exhibited by PDAs in relation to the chemical nature of the monomer and the polymerization procedure, as well as in response to environmental perturbations, make them excellent materials for the fabrication of sensing devices. On the basis of our previous work on PDA self-assembled monolayers on flat metal surfaces, the results of which are briefly reported, we prepared differently-shaped gold and silver nanocores (spheres, cages) coated with various diacetylenic monomers having end-groups able to firmly anchor to the metal surface. These nanohybrids exhibit in aqueous colloidal solution an enhanced photochemical polymerization monitored step by step with UV-Vis and SERS techniques. It is shown that in these stable assemblies an intra-particle polymerization takes place and that the dominant PDA form is conditioned by the core size and geometry. While the nanoparticles are SERS active in the visible, the nanocages should be excellent SERS substrates from the visible to the near infrared regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.