Abstract

The interaction of naphthalimide–polyamine conjugates with herring sperm DNA was studied by UV/vis absorption and fluorescent spectra under physiological conditions (pH=7.4). The observed spectral quenching of compounds by DNA and the displacement of EB from DNA-EB complex by compounds indicated that these naphthalimide–polyamine conjugates could intercalate into the DNA base pairs. The UV test also showed that these compounds caused the conformational alteration of DNA. Further caloric fluorescent tests revealed that the quenching mechanism was a static type, which Ksv of 1-DNA, 2-DNA and 1-DNA-EB, 2-DNA-EB 3-DNA-EB was 1.208×104, 7.792×103 and 1.712×104, 1.287×104, 2.874×104, respectively, at room temperature. The obtained quenching constant, binding constant and thermodynamic parameters suggested that binding strength was associated with substituted groups on naphthalene backbone, and the type of interaction force included mainly hydrogen bonding and weak van der Waals. The binding process was mainly driven by hydrogen bond and van der Waals. Additionally, the effect of NaCl on compounds-DNA interaction provided further evidence that their interaction modes were dependent on substituted groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call