Abstract
The effect of imidazo[4,5-d]phenazine (Pzn) attached to the 5(')-end of (dT)(15) oligonucleotide via a flexible linker on the thermal stability of poly(dA)·(dT)(15) duplex was studied in aqueous buffered solution containing 0.1 М NaCl at the equimolar ratio of adenine and thymine bases (100 μM each) using spectroscopic techniques. Duplex formation was investigated by measuring UV absorption and fluorescence melting curves for the Pzn-modified system. Tethered phenazine derivative enhances the thermostability of poly(dA)·(dT)(15) duplex increasing the helix-to-coil transition temperature by 4.5 °С due to an intercalation of the dye chromophore between AT-base pairs. The thermodynamic parameters of the transition for non-modified and modified systems were estimated using "all-or-none" model. The modification of the (dT)(15) results in a decrease in the transition enthalpy, however, the observed gain in the Gibbs free energy of complex formation, ΔG, is provided with the corresponding decrease in entropy change. The increase of ΔG value at 37 °C in consequence of (dT)(15) modification was found to be equal to 1.3 kcal/mol per oligonucleotide strand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.