Abstract

The binding of polyethylene glycol (10) n-octylphenyl ether (OPE) and polyethylene glycol (10) tert-octylphenyl ether (Triton X-100, TX) to β-cyclodextrin ( β-CD) and heptakis(2,3- O-dimethyl)- β-CD (DM- β-CD) was described in detail by surface tension, steady-state fluorescence of OPE and TX, and phosphorescence of 1-bromonaphthalene (BN) probe. Surface tension and fluorescence measurements show that β-CD entraps the hydrophobic moieties of OPE and TX to form inclusion complexes with the stoichiometry of 1:1. Unlike the n-octyl group of OPE, however, the tert-octyl group of TX fails to be encapsulated into the cavity of DM- β-CD because of the steric hindrance of methyl groups at the rim of the cavity. The inclusion of the phenyl group of OPE and TX was demonstrated by dynamic quenching effect of iodide ion on fluorescence of OPE and TX in the presence of β-CD. Static fluorescence quenching of OPE and TX by BN, phosphorescence of BN, and energy transfer between TX and BN provide additional evidence for the inclusion of their phenyl groups into the CD cavity. Analyses of molecular size suggest that the longer n-octyl group of OPE is situated in curled manner in the cavity and the tert-octyl group of TX undergo a slight distortion for fit of β-CD. Further introduction of the third guest component into the CD cavity occupied by OPE and TX will force the flexible octyl groups of OPE and TX to deform to a greater extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.