Abstract

Introduction Trehalose, a glass-forming bioprotectant disaccharide, has been demonstrated to possess significant potential within the food industry. It does not interact with reactive molecules such as amino groups from peptides and proteins, preventing the degradation and aggregation due to Maillard reactions. Objective This paper aims to review at the molecular level the effects of trehalose on the structural and dynamical properties of water and on protein to highlight the stabilization and conservation properties on food products. Results and Conclusions The experimental findings presented show that water molecules are arranged in presence of trehalose in a particular configuration which avoids ice formation, so limiting damage due to freezing and cooling. On the other hand, homologous disaccharides, and trehalose to a greater extent, slow down the dynamics of water with a significant influence on the biological activity. These results imply that trehalose has a greater ability to bind volatile substances and deliver superior bioprotective effectiveness. Furthermore trehalose is shown to be incapable of taking part in the denaturation process of lysozyme under thermal stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.