Abstract
We carried out a laser spectroscopic investigation of high-pressure, high-temperature (HTHP) synthetic diamond containing NE8 defects. In the photoluminescence (PL) emission spectra the defects have a zero-phonon line (ZPL) at 794nm. Under 730nm excitation the width and position of the ZPL as well as the Debye-Waller factor showed systematic temperature dependences which were modelled in accordance of a modified model of impurity defects in solids. A strong dependence of the position of the 794nm ZPL on temperature suggests that NE8-containing diamond could be suitable for sensitive optical thermometry above 200K. Further, the PL in the NIR spectral range makes the diamond crystalline particles promising temperature sensors for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.