Abstract

The secondary structural changes of bovine serum albumin (BSA) aqueous solutions with and without calcium cations were investigated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) technology. The spectra of BSA solution and BSA dry powder were mainly reflected the formation of hydrogen bonds between water and BSA. Further investigation indicated that the concentrations of calcium cations in BSA aqueous solution also affected the secondary structural change of the protein. Amide I band was red shifted and amide II band was blue shifted in aqueous environment compared with the dry BSA powder, and the addition of calcium cations further changed the amide bands position, which led to the change of the secondary structure. The result was coinciding with the Raman spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call