Abstract

CdSe/CdS quantum dots (QDs) capped with L-cysteine can provide an effective platform for the interactions with bovine serum albumin (BSA). In this study, absorption and fluorescence (FL) spectroscopy were used to study the binding reactions of QDs with BSA, respectively. The binding constant (≈10(4) M(-1)) from FL quenching method matches well with that determined from the absorption spectral changes. The modified Stern-Volmer quenching constant (5.23 × 10(4), 5.22 × 10(4), and 4.90 × 10(4) M(-1)) and the binding sites (≈1) at different temperatures (304 K, 309 K, and 314 K) and corresponding thermodynamic parameters were calculated (∆G < 0, ∆H < 0, and ∆S < 0). The results show the quenching constant is inversely correlated with temperature. It indicates the quenching mechanism is the static quenching in nature rather than dynamic quenching. The negative values of free energy (∆G < 0) suggest that the binding process is spontaneous, ∆H < 0 and ∆S < 0 suggest that the binding of QDs to BSA is enthalpy-driven. The enthalpy and entropy changes for the formation of ground state complex depend on the capping agent of QDs and the protein types. Furthermore, the reaction forces were discussed between QDs and BSA, and the results show hydrogen bonds and van der Waals interactions play a major role in the binding reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.