Abstract

Bovine (BSA) and human (HSA) serum albumins are frequently used in biophysical and biochemical studies since they have a similar folding, a well known primary structure, and they have been associated with the binding of many different categories of small molecules. One important difference of BSA and HSA is the fact that bovine albumin has two tryptophan residues while human albumin has a unique tryptophan. In this work results are presented for the interaction of BSA and HSA with several ionic surfactants, namely, anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl- N, N-dimethyl-3-ammonium-1-propanesulfonate (HPS), as monitored by fluorescence spectroscopy of intrinsic tryptophans and circular dichroism spectroscopy. On the interaction of all three surfactants with BSA, at low concentrations, a quenching of fluorescence takes place and Stern–Volmer analysis allowed to estimate their ‘effective’ association constants to the protein: for SDS, CTAC and HPS at pH 7.0 these constants are, respectively, (1.4±0.1)×10 5 M −1, (8.9±0.1)×10 3 M −1 and (1.4±0.1)×10 4 M −1. A blue shift of maximum emission is observed from 345 to 330 nm upon surfactant binding. Analysis of fluorescence emission spectra allowed to separate three species in solution which were associated to native protein, a surfactant–protein complex and partially denatured protein. The binding at low surfactant concentrations follows a Hill plot model displaying positive cooperativity and a number of surfactant binding sites very close to the number of cationic or anionic residues present in the protein. Circular dichroism data corroborated the partial loss of secondary structure upon surfactant addition showing the high stability of serum albumin. The interaction of the surfactants with HSA showed an enhancement of fluorescence at low concentrations, opposite to the effect on BSA, consistent with the existence of a unique buried tryptophan residue in this protein with considerable static quenching in the native state. The effects of surfactants at low concentrations were very similar to those of myristic acid suggesting a non specific binding through hydrophobic interaction modulated by eletrostatic interactions. The changes in the vicinity of the tryptophan residues are discussed based on the recently published crystallographic structure of HSA–myristate complex (S. Curry et al., Nat. Struct. Biol. 5 (1998) 827).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.