Abstract

Humic acids (HAs) that extracted from leachates from semi-aerobic and anaerobic landfills test field at different stabilization times were characterized by elemental composition, Fourier transform infrared spectroscopy (FTIR), and Carbon-13 Cross-Polarization Magic-Angle-Spinning Nuclear Magnetic Resonance (13C CP/MAS NMR). The higher sulfur (S) content of HA in the anaerobic landfill leachate after a short stabilization time showed that the S released from the organic matter degradation was more easily stabilized under anaerobic conditions, which indicate that HA from anaerobic landfill leachate was more chemically reactive and played a more important role in mobilizing heavy metal, especially mercury, at early landfill stabilization times. However, the S content of HA from the semi-aerobic landfill increased over time, suggesting that more S was stabilized in HA as the landfill stabilization time was extended. The analytical results for the FTIR and NMR showed that the HA from the anaerobic landfill contained more aromatic groups, while HA from the semi-aerobic landfill had more oxygen-containing groups. The aromatic components of the HA from both the anaerobic and semi-aerobic landfills increased over time, suggesting that the maturity and humification degree of HA increased during the stabilization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call