Abstract
This study delves into an examination of the structural and luminescent properties of zirconium dioxide (ZrO2) synthesized via the solid-state combustion method. Nitrates are harnessed as the oxidizing agent, while glycine serves as the fuel. Two distinct compositions are explored: a stoichiometric 1:1 ratio and a fuel-enriched 1:2 ratio. The structural analysis, employing X-ray diffraction and Raman spectroscopy, predominantly manifests a tetragonal structural phase in both samples; however, a minor monoclinic phase has also been observed in the former sample. The band gap was found to be 4.50 eV and 4.28 eV for ZrO2 synthesized in stoichiometric ratio and a fuel-enriched ratio respectively. The samples also show defects assisted photoluminescence in both the samples. The thermoluminescence of samples were investigated after irradiating the samples with UV and gamma rays for different doses. The TL curves manifest a shift towards lower temperatures at higher doses. . Significantly, the sample prepared with a 1:1 nitrate-fuel ratio exhibits a more pronounced overall TL intensity. In conclusion, our findings imply that the formation of the tetragonal phase may be influenced by strain energy, rather than being solely ascribed to size effects and oxygen vacancies within the lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.