Abstract

Catanionic microemulsions formed by dodecyltrimethylammonium bromide (DTAB), sodium dodecyl sulfate (SDS), n-hexanol, dodecane, and citrate buffer have been characterized by using dynamic light scattering (DLS) and spectroscopic studies. While the DLS measurements provide information about the hydrodynamic diameters of the microemulsion droplets formed upon variation of the constituents, steady-state and time-resolved fluorescence emission experiments probe the polarity and the dynamics of the trapped solvent pool inside of the microemulsion droplets of nanometer dimension. In addition, time-resolved fluorescence anisotropy shows the rigidity of the confined solvent pool as well as the coupling between the motion of a solute and those of the solvent molecules. The results obtained from the DLS and those from the steady-state and time-resolved fluorescence emission studies have been found to correlate well with the superactivity of horseradish peroxidase enzyme in the catanionic microemulsions. Subsequently, the time-zero estimate for the dynamic Stokes shift in these microemulsions reveals that approximately 50% of the total solvent dynamical response is missed due to the limited time resolution employed in our experiments. The amplitude of the missing portion is similar to what has been observed recently for nanoscopic water by Fayer and co-workers (Piletic, I. R.; Tan, H.-S.; Fayer, M. D. J. Phys. Chem. B 2005, 109, 21273).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.