Abstract

Hypocrellin B (HB), a lipid-soluble natural pigment of perylenequinone derivative, is considered as potential photosensitizer for photodynamic therapy. Liposomes loaded with HB can constitute a simple model system, appropriate for better understanding the photodynamic action of HB in vivo. The steady-state absorption and emission spectra, quantum yield and lifetime of fluorescence of HB incorporated into egg L-a-phosphatidyl-choline (EPC) liposome were examined. The photochemical properties (Type I and/or Type II) of HB have also been studied in aqueous dispersions of small unilamellar liposomes of EPC using electron paramagnetic resonance and spectrophotometric methods, respectively. The quantum yield of 1O2 generated by HB is ca 0.76 in chloroform solution and it did not change upon the incorporation of HB into liposomes of EPC. The superoxide anion radical was generated by the electron transfer from the anion radical of HB (HB.-) to oxygen. The disproportionation of O2.- can generate H2O2 and ultimately the highly reactive .OH via the Fenton reaction. It could be that the disproportionation proceeded too fast, so we could not detect O2.- directly in aqueous dispersions of liposome EPC. Moreover, the self-sensitized photooxygenation of HB embedded in liposomes was studied, and almost fully (87%) inhibiting this reaction of HB by p-benzoquinone (as the quencher of O2.-) in aqueous dispersion of liposome EPC indicated that the radical mechanism (Type I) might be mainly involved in this oxygenation. All these findings suggested that the photodynamic action of HB proceeded via both Type-I and -II mechanisms, but Type-I mechanism might play a more important role in the aqueous dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.