Abstract

The detection of explosive materials is not only important as an issue in landmines but also for global security reasons, unexploded ordnance, and Improvised Explosive Devices detection. In such areas, explosives detection has played a central role in ensuring the safety of the lives of citizens in many countries. Raman Spectroscopy is a well established tool for vibrational spectroscopic analysis and can be applied to the field of explosives identification and detection. The analysis of PETN is important because it is used in laminar form or mixed with RDX to manufacture Semtex plastic explosive and in the fabrication of Improvised Explosive Devices (IEDs). Our investigation is focused on the study of spectroscopic signatures of PETN in contact with soil. Ottawa sand mixed in different proportions with PETN together with the study of the influence of pH, temperature, humidity, and UV light on the vibrational signatures of the mixtures constitute the core of the investigation. The results reveal that the characteristic bands of PETN are not significantly shifted but rather appear constant with respect of the ubiquitous band of sand (~463 cm-1). These results will make possible the development of highly sensitive sensors for detection of explosives materials and IDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call