Abstract

The location of Brønsted-acid sites (bridging OH groups, b-OH) at different crystallographic positions of zeolite catalysts influences their reactivity due to varying confinement. Selecting the most stable b-OH conformers at each of the 12 T-sites (T=Si/Al) of H-MFI, a representative set of 26 conformers is obtained which includes free b-OH groups pointing into the empty pore space and b-OH groups forming H-bonds across five- or six-membered rings of TO4 tetrahedra. Chemically accurate coupled-cluster-quality calculations for periodic models show that the strength of internal H-bonds and, hence, the OH bond length vary substantially with the framework position. For 11 of the 19 H-bonded b-OH groups examined, our predictions fall into the full width at half maximum range of the experimental signals at 3250±175 cm-1 and 7.0±1.4 ppm which supports previously debated assignments of these signals to H-bonded b-OH sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.