Abstract
We use Z-contrast imaging and atomically resolved electron energy-loss spectroscopy on an aberration-corrected scanning transmission electron microscope to investigate the local electronic states of boron atoms at different edge structures in monolayer and bilayer h-BN. We find that edges with bonding unsaturated sp2 boron atoms have a unique spectroscopic signature with a prominent pre-peak at ∼ 190.2 eV in the B K-edge fine structure. First-principles calculations reveal that the observed pre-peak arises from excitations to the in-plane lowest-energy empty sp2 boron dangling bonds at the B-terminated edge. This spectroscopic signature can serve as a fingerprint to explore new edge structures in h-BN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.