Abstract

Optical activity is a fundamental effect of electrodynamics that was discovered more than 200 years ago. While optical activity is typically recognized by the rotation of the polarization of light as it propagates through a bulk medium, in certain configurations, the specular reflection of light on the surface of a material is also sensitive to its optical activity. Here, we show that the ellipsometric analysis of the light reflected at the surface of a gyrotropic but achiral crystal of AgGaS(2) allows the spectroscopic determination of its optical activity above the bandgap, where transmission methods are not applicable. This is the first clear spectroscopic determination of reflection optical activity in a crystal, and the values obtained are, to the best of our knowledge, the largest ever reported for a natural material. We also demonstrate that normal incidence transmission and reflection measurements probe different aspects of optical activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call