Abstract
The vibrational wavenumbers of optimized molecular structure of 1-phenylcyclopentane carboxylic acid (1PCPCA) molecule have been calculated by quantum chemical theory and compared with experimental results. The density functional theory (DFT) approach is followed using the method B3LYP and 6-311++G(d,p) basis set. Using potential energy distribution, all the assignments of the basic vibrational modes were calculated. Natural bond orbital (NBO) and atoms in molecules (AIM) topological studies applied to get the intermolecular interactions of the compound. 1H and 13C chemical shift of NMR was estimated on the molecule and also compared with the experimental spectra. In order to find the band gap, the time-dependent (TD-DFT) method is used to get the higher order energy levels properties and also compared with experimental data of UV–vis spectrum. From the analysis of various spectroscopic studies, there is a good relationship between the experimental and theoretical values obtained. Quantum characters, bio-active nature and reactive areas of the molecule are revealed by Fukui function, molecular electrostatic potential (MEP) and Hirshfeld surface studies. The human enzyme steroidogenic types and their protein targets were tested with this molecule by molecular docking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.