Abstract

The DFT studies of the 1-Amino-5-chloro-anthraquinone (ACAQ) molecule have been carried out with extensive and accurate investigations of detailed vibrational and spectroscopic investigations and validated by experimentally. The optimized molecular structure and harmonic resonance frequencies were computed based on DFT/B3LYP method with 6-311G++(d,p) basis set using the Gaussian 09 program. The experimental and calculated vibrational wavenumbers were assigned on the basis of PED calculations using VEDA 4.0 program. The 13C NMR isotropic chemical shifts of the molecule were calculated using Gauge-Invariant-Atomic Orbital (GIAO) method in DMSO solution and compared with the experimental data. The absorption spectrum of the molecule was computed in liquid phase (ethanol), which exhibits л to л* electronic transition and compared with observed UV–Vis spectrum. Frontier molecular orbitals analysis shows the molecular reactivity and kinetic stability of the molecule. The Mulliken atomic charge distribution and molecular electrostatic potential surface analysis of the molecule validate the reactive site of the molecule. The natural bond orbital analysis proves the bioactivity of the molecule. Molecular docking analysis indicate that ACAQ molecule inhibits the action of c-Met Kinase protein, which is associated with the thyroid cancer. Hence, the present study pave the way for the development of novel drugs in the treatment of thyroid cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call