Abstract

The present investigation is insightful in discerning the experimental and computational spectroscopic behavior of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5 triazine (MSTCMT) by employing density functional theory (DFT) at B3LYP/6–311++G(d,p)/cc-pVDZ basis sets. The detailed vibrational analysis has been carried out using FT-IR and Raman within 3500–400 cm−1 and 3500–600 cm−1 respectively assisted by VEDA. Chemical shifts obtained from nuclear magnetic resonance (NMR) provided essential information useful in analyzing the molecular structure of MSTCMT. The thermodynamic functions of the MSTCMT molecule have been calculated at 298.15 K using the B3LYP method at 6–311++G(d,p) and cc-pVDZ basis sets. The non-linear optical properties such as polarizability, first-order hyperpolarizability, and second-order hyperpolarizability of the MSTCMT molecule have been calculated using 6–311++G(d,p) and cc-pVDZ basis set at B3LYP level. Molecular docking has been performed to check the inhibitory effect of MSTCMT against the SARS-CoV-2 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call