Abstract

Using an ab initio approach based on pseudopotential technique, pair potential approach, core polarization potentials, and large Gaussian basis sets, we investigate interaction of heavy alkali-krypton diatomic M-Kr (M = Rb, Cs, and Fr) van der Waals dimers. In this context, the core-core interactions for M+-Kr (M = Rb, Cs, and Fr) are calculated at coupled-cluster single and double excitation (CCSD) level and included in the total potential energy. Therefore, the potential energy curves are performed for 14 electronic states: eight of 2Σ+ symmetry, four of 2Π symmetry, and two of 2Δ symmetry. Furthermore, for each M-Kr dimer, the spin-orbit coupling has been considered for the B2Σ+, A2Π, 32Σ+, 22Π, 52Σ+, 32Π, and 12Δ states. In addition, the transition dipole moment has been determined, including the spin-orbit effect using the rotational matrix issued from the spin-orbit potential energy calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.