Abstract

The absorption and fluorescence characteristics of Er doped and Nd, Er codoped fluoride glasses were investigated under illumination of the simulated sunlight, laser or a monochromatic light filtered from a Xe lamp. Er was used as a sensitizing agent enhancing the energy conversion and the emission efficiency of Nd ions in fluoride glass intended for the sunlight excitation. Er doped fluoride glasses showed four emission peaks under simulated sunlight illumination at the wavelengths of 550, 848, 980, and 1530 nm attributed to the electronic transitions of Er<sup>3+</sup> ions. The quantum efficiency of the emission from all of the bands had a peak at x = 0.5 mol. % Er and with the maximum of 73 %. The intensity of each emission band showed different ratios for various ErF<sub>3</sub> contents. It is expected that concentration quenching of <sup>4</sup>S<sub>3/2</sub> state is easy to occur with high concentration of ErF<sub>3</sub> compared to the other states. The energy transfer from Er to Nd was studied using a monochromatic light illumination which is absorbed by Er<sup>3+</sup> ions only. Strong contribution of Er absorption to the 1.05 &mu;m emission of Nd, Er co-doped fluoride glass was observed. Er was confirmed as a suitable sensitizer for the enhanced energy conversion and emission efficiency of Nd ions in ZBLAN glasses which are proposed for highly efficient solar pumped fiber lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.