Abstract

In this study, Cr3+-doped MgAl2O4 nanophosphors have been prepared via a facile high-temperature calcination route. The structure and morphology of the products were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques, which confirmed the typical spinel MgAl2O4 phase and sphere-like shape with particle size distribution of 50–80nm. It was found that the Cr3+-doped MgAl2O4 can be efficiently excited by visible light and exhibits intense red emission peaking at 695nm, corresponding to the 2Eg→4A2g transition of Cr3+ ions. The evolution of the luminescent properties on the Cr-doping concentration (0, 0.5, 1, 2, 3, 4 and 6mol%) was then investigated and the optimal concentration was 3.0mol%. It is believed that active intermediates and gases created in the calcining process play important roles not only on the formation of the monodispersed nanoparticles, but also on the homogeneous doping of Cr3+ at high concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.