Abstract

In this study, AgNPs-loaded polyurethane-sodium alginate (PU-S/Alg) composite polymers were prepared by precipitation polymerization and in-situ reduction method. Their catalytic potential was evaluated for the reduction of methyl orange (MO), brilliant blue (BB), Rhodamine B (RhB), 4-nitroaniline (4-NA), and 4-nitrophenol (4-NP). Successful preparation of samples was confirmed by UV–Visible spectrophotometry (UV–Visible), Fourier transform infrared (FTIR), and Scanning electron microscopy (SEM) analysis. During the catalytic study, the value of kapp for the reduction of MO in the presence of NaBH4 and catalyst was found 0.488 min−1 while, in the presence of NaBH4 and catalyst alone, were found as 0.9 × 10-4 and 0.8 × 10-5 min−1, respectively which indicates the role of catalyst in making the reaction speedy. The value of kapp for the reduction of BB, RhB, 4-NA, and 4-NP was found as 0.764, 0.475, 0.212 and 0.757 min−1, respectively. Simultaneous reduction of dyes induced a decreased reaction completion time under the same reaction conditions. A slight increase in the value of kapp for the catalytic reduction of MO was also observed when reactions were performed in the presence of ionic media of different salts such as NaCl, KCl, CaCl2, and MnCl2. The rate of reduction of MO was increased with the increase in ionic strength of the medium. However, the presence of SDS (surfactant) in the reaction mixture induced the decreased activity of the catalyst and increased reaction completion time. The same value of kapp for the reduction of MO was observed in the case of freshly prepared and several days old nanocomposite catalyst. These results illustrate the stability and maintained catalytic potential of metal NPs for a prolonged time. Our reported catalyst also showed good potential for the treatment of dyes-polluted textile industry wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.