Abstract

Artemisinin-based combination therapy is widely used for the treatment of uncomplicated Plasmodium falciparum malaria, and piperaquine (PQ) is one of the important partner drugs. During the biotransformation of PQ, M1 (N-oxidation product), M2 (N-oxidation product), M3 (carboxylic acid product), M4 (N-dealkylation product), and M5 (N-oxidated product of M4) are formed by cytochrome P450 pathways. Despite decades of clinical use, the interactions between PQ and its main metabolites (PQs) with human serum albumin (HSA) have not been reported. In the present study, the binding of PQs with HSA under physiological conditions was investigated systematically through fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods. The experimental results show that the intrinsic fluorescence quenching of HSA was induced by those compounds resulting from the formation of stable HSA-compound complexes. The main forces involved in the interactions between PQ, M1, and M2 which bind to HSA were hydrogen s and van der Waals forces, while the interactions of M3, M4, and M5 were driven by hydrophobic forces. The main binding sites of the compounds to HSA were also examined by classical fluorescent marker experiments and molecular docking studies. Binding constants (Kb) revealed that the affinities of the PQ, M1, M2, M3, and M4 to HSA were stronger than that of M5. Additionally, the binding rates of PQs with HSA were determined by ultrafiltration methods. Consistent with the binding constant results, the binding rate of M5 was lower than the binding rates of PQ, M1, M2, M3, and M4. Furthermore, PQs binding to HSA led to conformational and structural alterations of HSA, as revealed by multi-spectroscopic studies. In order to investigate one possible mechanism by which PQs inhibit the growth of malaria-causing Plasmodium parasites, 1H NMR spectroscopy was performed to investigate the interaction of the PQs with heme. This study is beneficial to enhance our understanding of the ecotoxicology and environmental behaviors of PQ and its metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call