Abstract

A Nd:Yag laser is employed to irradiate thick Fe targets placed in vacuum. The obtained non-equilibrium Fe-plasma is investigated with various analytical techniques. An electrostatic ion energy analyzer (IEA) and a ring ion collector (ICR) are employed, in time-of-flight configuration, to monitor in situ the ejected ions from the plasma along the normal direction to the target surface and to determine the plasma core temperature and the ion energy distributions.The visible plasma emission, detected with an optical spectrometer, permitted to evaluate the electronic temperature and density and the fluence threshold of the visible light emission. The spectroscopy measurements of ions and photons and the fast CCD plasma images are employed to evaluate the temperature gradients in the laser-generated plasma plume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.