Abstract

Methane hydrate is believed to contain a massive amount of potentially extractable hydrogen gas due to methane as the main component. A high-frequency argon jet plasma method has been proposed for decomposing hydrogen content. The excitation temperature of plasma can be directly observed from atomic emission lines. This information is more efficient to characterize the plasma behavior to optimize the decomposition process. In this study, the plasma excitation temperature was determined using spectroscopy and Boltzmann’s plot with a higher argon gas flow rate. An argon gas flow rate varied from 300, 400, 500, 1000, 1500, 2000, 2500, and 3000 mL/min. It flows inside a hollow tube in the counter electrode. A 27.12MHz high-frequency power source of plasma was applied to produce jet plasma at atmospheric pressure. The excitation temperature was observed in the range of 4310K to 5133K. The highest excitation temperature of 5133K was obtained at an argon gas flow rate of 500 mL/min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.