Abstract

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li2O10PbO(10-x) Al2O370B2O3x Nd2O3 (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentialities using the absorption, emission and photoluminescence decay spectral measurements. The oscillator strengths measured from the absorption spectra were used to estimate the Judd-Ofelt intensity parameters using least square fitting procedure. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions 4F3/2 → 4I11/2 (1063 nm) and 4F3/2 → 4I9/2 (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd3+ ion concentration up to 1 mol % and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd3+ ion concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, the non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively higher values of emission cross-sections, branching ratios and quantum efficiency values obtained for 1.0 mol% of Nd3+ ions in LiPbAlB glass suggests it's aptness in generating lasing action at 1063 nm in NIR region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.