Abstract

The triple helix formation by the oligonucleotide 5′d(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) has been investigated by UV absorption spectroscopy and circular dichroism. In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we show the following significant results: i) In the absence of MgCl2, the oligonucleotide adopts a hairpin duplex structure with the dangling tail 5′d(G4T4G4-[T4]). This 5′ extremity, which contains separated runs of four guanine residues, does not assume the expected tetraplex conformation observed when this sequence is free, ii) In the presence of MgCl2, the oligonucleotide folds back on itself twice to give a triple helix via a double hairpin formation, with [T4] single-strand loops, iii) The addition of high concentration of KCl to the preformed triplex does not disrupt the structure. Nevertheless, if the oligonucleotide is allowed to fold back in the presence of K+, triplex formation is inhibited. Circular dichroism studies demonstrate that the oligonucleotide adopts a dimeric conformation, resulting from the association of two hairpin duplexes, via the formation of an antiparallel G-quadruplex by the telomeric 5′d(G4T4G4-[T4]) extremities, iv) Under the experimental conditions used in this report, the triplex melts in a monophasic manner, v) Netropsin, a DNA minor groove ligand, binds to the central site A4/T4 of the duplex and to that of the triplex in an equimolar stoichiometry. In contrast with previous studies concerning pyr.pur:pyr triplexes, thermal denaturation experiments demonstrate that the netropsin binding stabilizes the intramolecular triplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.