Abstract

We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the deuterium chromophore's vibrational motion in the molecule CDBrClF. The original model has four degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows in a semiclassical approach the reduction to three degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications, and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.