Abstract

It has been elucidated that the responses to light by the human eye influence not only color and brightness recognition but also physiological aspects such as hormones. Melatonin, which affects human circadian rhythms, is sensitive to the blue wavelength region of light. We have investigated the spectroscopic effects of light from virtual reality (VR) and augmented reality (AR) display devices on nonvisual characteristics by means of an analysis of the spectral power distribution (SPD). The circadian illuminance and melatonin suppression value were introduced as representative figures of merits for spectroscopically evaluating nonvisual characteristics. A VR/AR-like custom-made instrument was used to study how the SPD of the display light source affects nonvisual characteristics. Moreover, using multilayer thin-film filters, optimal conditions for minimizing the change of the visual color characteristics of the display while reducing the influence on the non-visual characteristics are also discussed. For the AR device, we found that its spectrum was mostly affected by external light rather than by the spectrum of the AR display itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.