Abstract

It is currently impossible to consistently predict kidney graft viability and function before and after transplantation. We explored optical spectroscopy to assess the degree of ischemic damage in kidney tissue. Tunable UV laser excitation was used to record autofluorescence images, at different spectral ranges, of injured and contralateral control rat kidneys to reveal the excitation conditions that offered optimal contrast. Autofluorescence and near-infrared cross-polarized light-scattering imaging were both used to monitor changes in intensity and spectral characteristics, as a function of exposure time to ischemic injury. These two modalities provided different temporal behaviors, arguably arising from two different mechanisms providing direct correlation of intrinsic optical signatures to ischemic injury time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.