Abstract

We present first results of a spectroscopic survey targeting K-selected galaxies at z=2.0-2.7 using the GNIRS instrument on Gemini-South. We obtained near-infrared spectra with a wavelength coverage of 1.0-2.5 micron for 26 K-bright galaxies (K<19.7) selected from the MUSYC survey using photometric redshifts. We successfully derived spectroscopic redshifts for all 26 galaxies using rest-frame optical emission lines or the redshifted Balmer/4000 Angstrom break. Twenty galaxies have spectroscopic redshifts in the range 2.0<z<2.7, for which bright emission lines like Halpha and [OIII] fall in atmospheric windows. Surprisingly, we detected no emission lines for nine of these 20 galaxies. The median 2 sigma upper limit on the rest-frame equivalent width of Halpha for these nine galaxies is ~10 Angstrom. The stellar continuum emission of these same nine galaxies is best fitted by evolved stellar population models. The best-fit star formation rate (SFR) is zero for five out of nine galaxies, and consistent with zero within 1 sigma for the remaining four. Thus, both the Halpha measurements and the independent stellar continuum modeling imply that 45% of our K-selected galaxies are not forming stars intensely. This high fraction of galaxies without detected line emission and low SFRs may imply that the suppression of star formation in massive galaxies occurs at higher redshift than is predicted by current CDM galaxy formation models. However, obscured star formation may have been missed, and deep mid-infrared imaging is needed to clarify this situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.