Abstract

In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000–450cm−1 and 4000–50cm−1, respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (ΔH). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (η), chemical potential (μ), Electro negativity (χ) and electrophilicity values (ω) are calculated and reported.The oscillator’s strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.