Abstract
A widely acclaimed model for the excited state relaxation dynamics of auramine-O involves orientational relaxation of dimethylanilino moieties along the barrierless excited state potential energy surface (PES). Such a model would necessitate similar excited state dynamics in media offering similar viscous drag. However, we have noticed an interesting experimental observation showing auramine-O to have ~8 times larger fluorescence quantum yield in chloroform than in methanol, though both the solvents have the same viscosity. The femtosecond fluorescence transients of auramine-O in chloroform surprisingly depict a rise in fluorescence transients, which has not been observed before. This, along with the simultaneous observation of unexpectedly large fluorescence lifetime and multi-exponential transients (in chloroform) questions the thoroughly accepted barrierless model of auramine-O relaxation dynamics, as the barrierless model would demand a short lifetime and single-exponential decay. Temperature dependent quantum yield measurements along with solvent dependent excited state multi-coordinate time-dependent density functional theory calculations further unveil the exact nature of PES. All these results concomitantly conclude that, at-least in chloroform, upon photo-excitation auramine-O must pass over an activation barrier before damping the excited state population into ground state via a sink function through adiabatic coupling of the electronic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.