Abstract

Tyrosine D (TyrD) is one of two well-studied redox active tyrosines in Photosystem II. TyrD shows redox kinetics much slower than that of its homologue, TyrZ, and is normally present as a stable deprotonated radical (TyrD(•)). We have used time-resolved continuous wave electron paramagnetic resonance and electron spin echo envelope modulation spectroscopy to show that deuterium exchangeable protons can access TyrD on a time scale that is much faster (50-100 times) than that previously observed. The time of H/D exchange is strongly dependent on the redox state of TyrD. This finding can be related to a change in position of a water molecule close to TyrD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.