Abstract
Aldehyde deformylation reactions by metal dioxygen adducts have been proposed to involve peroxyhemiacetal species as key intermediates. However, direct evidence of such intermediates has not been obtained to date. We report the spectroscopic characterization of a mononuclear cobalt(III)-peroxyhemiacetal complex, [Co(Me3-TPADP)(O2CH(O)CH(CH3)C6H5)]+ (2), in the reaction of a cobalt(III)-peroxo complex (1) with 2-phenylpropionaldehyde (2-PPA). The formation of 2 is also investigated by isotope labeling experiments and kinetic studies. The conclusion that the peroxyhemiacetalcobalt(III) intermediate is responsible for the aldehyde deformylation is supported by the product analyses. Furthermore, isotopic labeling suggests that the reactivity of the cobalt(III)-peroxo complex depends on the second reactant. The aldehyde inserts between the oxygen atoms of 1, whereas the reaction with acyl chlorides proceeds by a nucleophilic attack. The observation of the peroxyhemiacetal intermediate provides significant insight into the initial step of aldehyde deformylation by metalloenzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.