Abstract

The pi-pi interaction between pyrene molecules and single-walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs) was studied by fluorescence, FTIR, Raman spectroscopy and molecular simulation. The carbon nanotubes were incubated in pyrene solution and dried for characterization. A broadband fluorescence emission at 463 nm of the incubated samples was observed, which is similar to that of pyrene excimers but shifts to shorter wavelength. The typical FTIR bands of pyrene shift to lower wavenumbers in the incubated samples. D- and G-bands in Raman spectra of SWNTs also shift to low frequencies. All these spectroscopic evidences reveal the stronger pi-pi stacking interaction between the nanotubes and pyrene molecules over the pyrene dimers, which leads to the formation of pyrene-carbon nanotube complexes. The systems of SWNTs and pyrene molecules were also studied with molecular simulation. It was found from the binding energy calculation that a stronger interaction presents between the pyrene molecule and the nanotube. In addition, the simulation gives some structural information about the pyrene-nanotube complex, such as the staggered conformation of pyrene on nanotube. The effect of defects in carbon nanotube sidewall was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.